
SUMPimpuls zur Verkehrsmodellierung

Mit

- Nina Thomsen (DLR & atSTAKE)
- Volker Waßmuth (KIT & PTV Transport Consult)

Moderation

Christian Klasen (DialogWerke)

SUMPimpuls | Verkehrsmodellierung Begrüßung

Laura Badusche

Fachzentrum Nachhaltige Mobilitätsplanung Hessen

SUMPimpuls | Verkehrsmodellierung Moderation

Christian Klasen **DialogWerke**

SUMPimpuls | Verkehrsmodellierung

Blick auf den SUMP-Lehrgang 2025

Modul 1 Start in den integrierten Planungsprozess

- SUMP verstehen und erklären (Historie und Hintergründe).
- Ganzheitliche Betrachtung der Mobilitätsplanung (Fokus Analyse).

Modul 2 Ziele, Daten und Zusammenhänge

- Entwicklung eines Zielsystems (vom Leitbild zu Teilzielen).
- Einsatz von Daten.
- Zusammenarbeit von Verwaltung & Politik.
- · Recht im SUMP-Kontext.

Modul 3 Menschen verstehen und mit Ihnen arbeiten

- Beteiligung und Kommunikation richtig ausgestalten.
- Die integrierte Mobilitätsplanung als Change-Prozess.

Modul 4 Bereit für die Umsetzung

- Entwicklung des Maßnahmensets.
- Aufsetzen des Monitorings.
- Vorbereitung der Umsetzung innerhalb der Verwaltung.

Interessensbekundungen und Themenvorschläge für 2026 an Laura Badusche (laura.badusche@htai.de) oder heute hier → → →

SUMPimpuls | Verkehrsmodellierung

Unser Programm für die nächsten 90 Minuten

Einführung in die Verkehrsmodellierung Prof. Dr. Volker Wassmuth Karlsruher Institut für Technologie (KIT) & PTV Transport GmbH

Makro, Meso, Mikro & more: Modellmethoden in der Praxis

Nina Thomsen
Institut für Verkehrsforschung beim Deutschen Zentrum für Luft- und Raumfahrt (DLR) & atSTAKE

Diskussion

Aufwand & Nutzen von Verkehrsmodellen für den SUMP-Prozess

Moderation

Christian Klasen, DialogWerke GmbH

Allgemeine Information

Bitte Stellen Sie Ihr Mikrofon stumm.

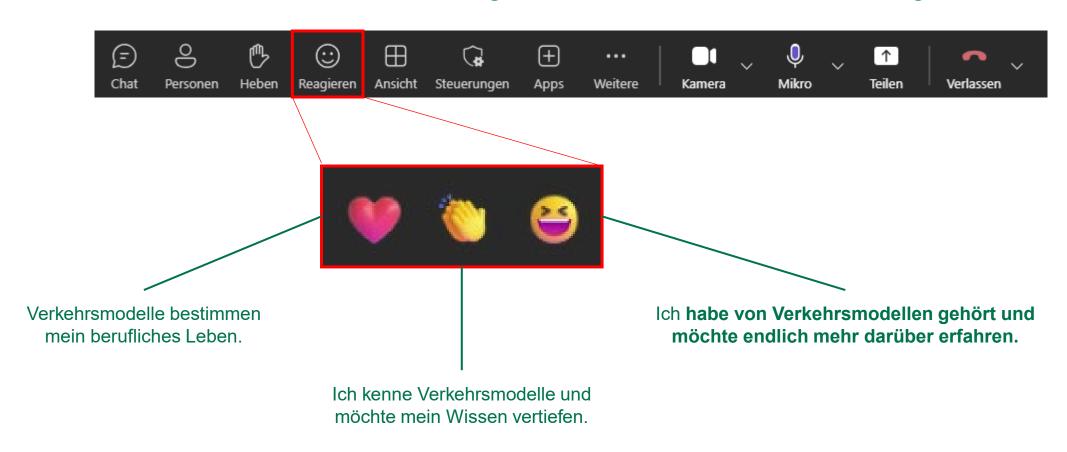
Kamera an oder aus?

Das ist Ihnen

überlassen!

Fragen? Sehr gerne!

- während des Vortrags im Chat
- während der Fragerunde per Handzeichen oder im Chat



Folien werden im
Anschluss auf
unserer Website zum
Download hinterlegt.

Wie ist Ihre Erfahrung mit der Verkehrsmodellierung?

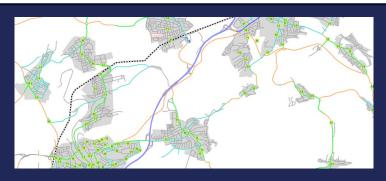
Einführung in die Verkehrsmodellierung

Prof. Dr. Volker Wassmuth

Karlsruher Institut für Technologie (KIT) & PTV Transport GmbH

Ein Verkehrsmodell ist ein Abbild des Verkehrsgeschehens in einem Gebiet

- Grundlagen für Verkehrsuntersuchungen und Pläne
- ermöglicht den Blick in die (verkehrliche) Zukunft


Weiterer Nutzen

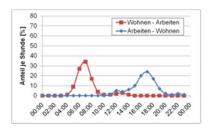
- Argumentationshilfe in der politischen Diskussion
- Gerichtsfestigkeit
- Versa chlichung der Diskussionen

Abgrenzung Modellierung

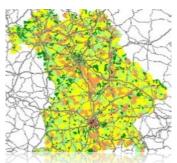
Verkehrsnachfragemodelle

- Mobilität von Personen und Gütern
- Analyse von Verhaltensänderungen
- Große Betrachtungsräume (Stadt, Region, Bundesland)
- Langfristige Prognose (15 bis 20 Jahre)
- Grundlage für strategische Planung / SUMP

Verkehrsflussmodelle


- Simulation der Bewegung und Interaktion von Menschen und Fahrzeugen
- Analyse und Bewertung von Leistungsfähigkeiten in Gebieten (Strecken, Knoten, Flächen)

Grundlage Verkehrsnachfragemodell


Verhaltensdaten

Verhaltensdaten

Wer hat welche Vorlieben?

→ Wegehäufigkeiten, Sensibilitätsparameter, Pkw-Verfügbarkeit

Raumstruktur

Wer entscheidet?

- → Personen(gruppen)
 Wo sind Ziele?
- → Attraktionspotenziale

Netzmodell IV/ÖV

Wie ist die Angebotsqualität für Alternativen?

Aktivitätenwahl – Was tun?

Zielwahl – Wohin?

Verkehrsmittelwahl – Womit?

Routenwahl – Wo lang?

Verkehrsnachfragemodell

Das Modell ist sensitiv hinsichtlich aller Input größen!

Output

- → Verflechtungen
- → Belastungen
- → Aktuelle Reisezeiten

Empfehlungen zu Nachfragemodellen

In	haltsverzeichnis	6
0	Vorbemerkungen	10
1	Einleitung	11
2	Verkehrsnachfragemodelle	15
3	Einsatzbereiche für Verkehrsnachfragemodelle	37
4	Hinweise und Empfehlungen für den Aufbau von Verkehrsnachfragemodellen	48
5	Datengrundlagen und Datenquellen	129
6	Qualitätssicherung von Verkehrsnachfragemodellen	153
7	Modellanwendung und Modellpflege	183
8	Dokumentation	195
9	Glossar	203
10	Literatur	217
11	Anhang 1: Empfehlung zum Modellkonzept für spezifische Einsatzbereiche	225
12	Anhang 2: Zusammenfassung Eingangsdaten Verkehrsnachfragemodelle und mögliche Quellen	248
13	Anhang 3: Methoden	250

Una bhä ngige Bera tende bieten hier Unterstützung an

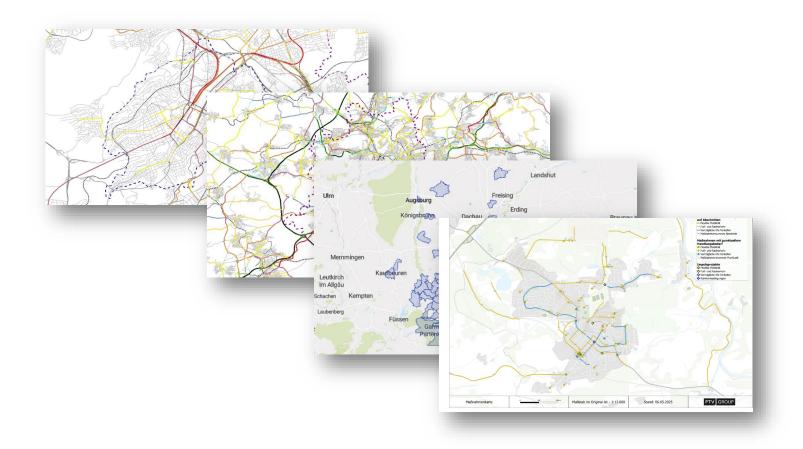
Verkehrsmodelle unterstützen einen SUMP

- 1. räumlich differenzierte Datensammlung und –haltung
- der Unterstützung bei der Bestandsanalyse (Erreichbarkeiten, Engstellen usw.)
- 3. Unterstützung bei der Bildung von Maßnahmen (z.B. Analyse von Nachfrageströmen und -potenzialen)
- 4. Abbildung der Verkehrsentwicklung in einer Stadt oder Region (Prognoseszenarien)
- 5. Wirkungsermittlung von Maßnahmen und Szenarien (aber: nicht alle SUMP -Maßnahmen lassen sich gleich gut in einem Modell abbilden!)

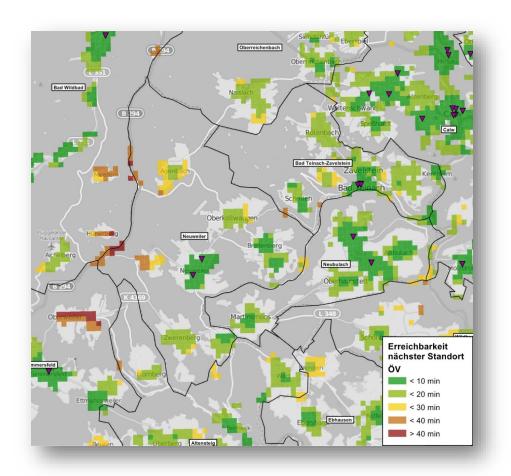
Die Modella nforderungen sind da bei unterschiedlich! Ein Na chfra gemodell ist erforderlich, Umlegungsmodelle helfen wenig

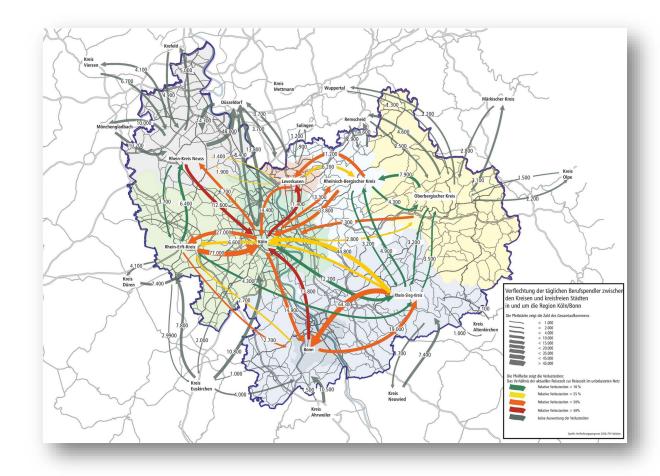
URBANE MOBILITÄTS:

Zuständigkeiten

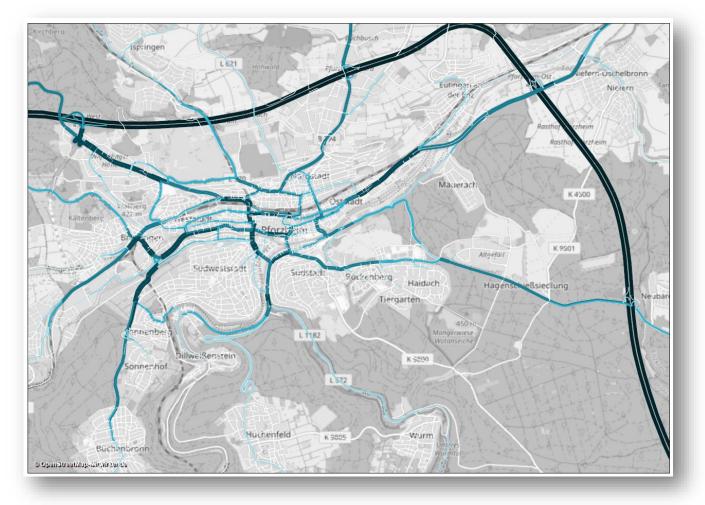

Maßnahmenwirkung im Modell

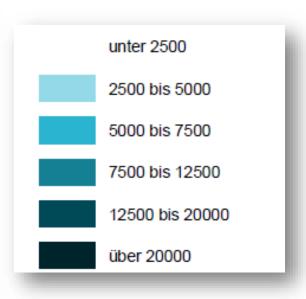
- Maßnahmen und Entwicklungen, die ein Standardmodell direkt abbilden kann
 - Infrastruktur (Straße, Schiene, Radwege)
 - Angebotsänderungen (Fahrplan, Geschwindigkeiten)
 - Strukturdatenänderungen (Einwohner, Arbeitsplätze, Altersverteilung)
- Maßnahmen, für die das Modell vorbereitet sein muss
 - Preise und Kosten
 - Parkraumbewirtschaftung
 - Attraktivität der Radinfrastruktur (Belag, Führungsform)
 - Park and Ride, On-Demand-Verkehr,...
- Maßnahmen für die Setzung oder externe Modelle erforderlich sind (normative Modellierung)
 - Entwicklung Verkehrsmittelimage (Radverkehrsanteil), Marketingkonzepte
 - Elektrifizierung von Flotten
 - ÖV-Zeitkartenbesitz


Ein paar Anwendungsbeispiele

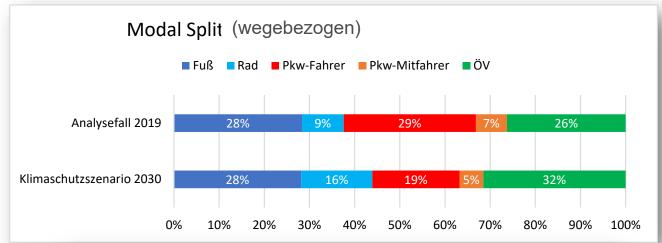


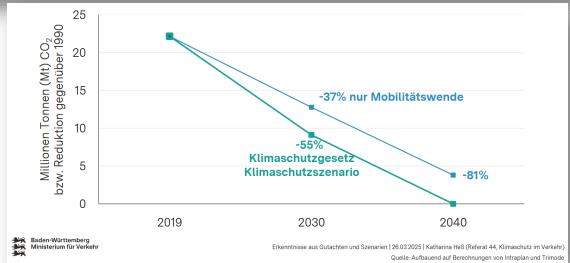
Er rei chbarkeit sanal ysen



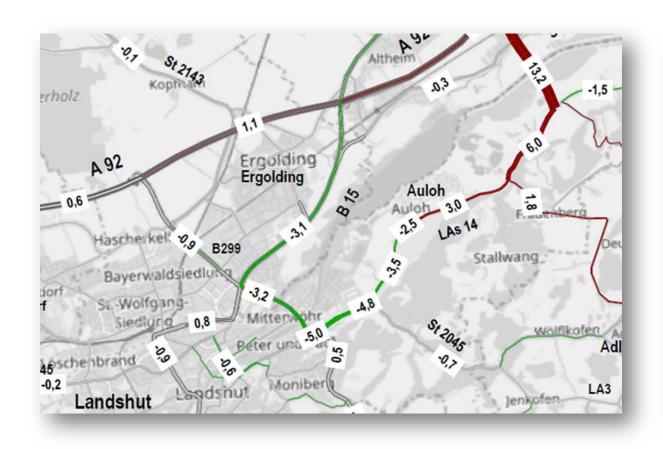

Quellen: PTV / Region Köln Bonn, Land Baden -Württemberg

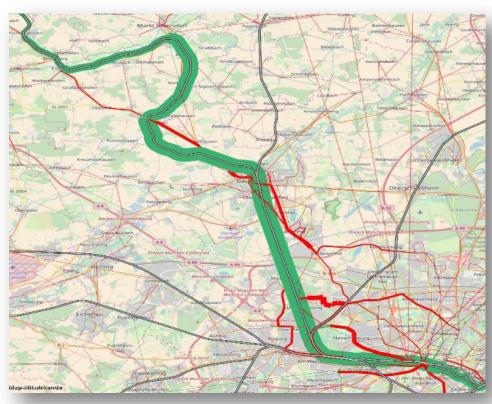
Kfz-Belastung Straßennetz



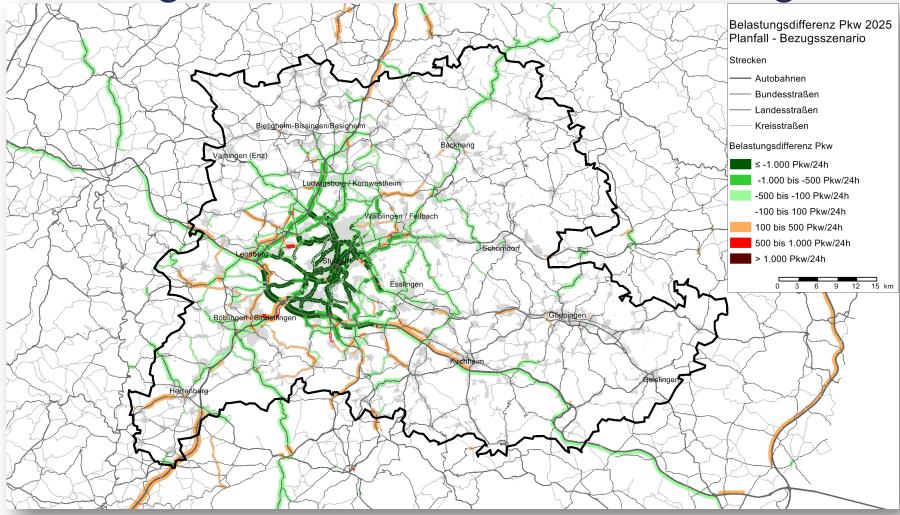

Quelle: PTV / Stadt Pforzheim

Verkehrliche Wirkungen und CO2-Reduktion



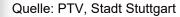

Quelle: PTV, Stadt Stuttgart, Land BW

Wrkung Infrastrukturmaßnahmen



Quelle: PTV / StBA Landshut / LVM By

Wrkung Parkraumbewirtschaftung



Quelle: PTV / VRS

Netzweite Wirkung Radverkehrsförderung

Drei Fragen und Antworten zum Abschluss...




Welche Vorteile bringen "Big Data"?

- > Wichtige Datengrundlagen (Standard)
 - › Digitalisierte Netzkarten
 - Fahrplandaten
 - > Räumlich differenzierte Einwohnerzahlen (Zensus)
 - › Georeferenzierte Verhaltensdaten (MiD)

- Ergänzende Daten und Methoden (hauptsächlich perspektivisch)
 - > Automatische Generierung von Arbeitsplatzzahlen
 - > Floating Car Daten / Mobilfunkdaten
 - › Automatische Modellgenerierungen (Model2Go)

Empirische Daten sind nicht prognosefähig!

Was beeinflusst den Aufwand?

- > Gibt es ein aktuelles (über -)regionales Modell, z.B. VDRM oder ein Landesverkehrsmodell?
 - > Reduziert aufwändige Datensammlung
- > Wird eine neue Haushaltsbefragung gewünscht?
 - › Deutlich höherer Zeit und Kostenaufwand
- > Welche Sonderfälle (P+R usw.) sind gewünscht?
 - > Jeder Sonderfall (teilweise politisch gewünscht) erhöht den Aufwand
- > Reicht eine Tagesumlegung oder werden Stunden(scheiben) gewünscht?
 - > Anwendungsfälle strategisch oder ergänzend verkehrstechnisch
- > Wie viele Szenarien sollen gerechnet werden?

We groß ist denn jetzt der Aufwand?

› Netzanalysen ohne Nachfrage:

4 Wochen

Übernahme Landesmodell, Nachkalibrierung:

ab 8 Wochen (eingeschränkte Funktionalität)

> Neubau auf Basis eines aktuellen überregionalen Modells:

ab 4 Monate für Analyse, danach Prognose

> Standardfall Neuaufbau eines Modells mit Grundlagendaten:

ca. 1 Jahr

Mit Ha usha ltsbefra gungen und weiteren Modella nforderungen entsprechend mehr

Makro, Meso, Mikro & more: Modellmethoden in der Praxis

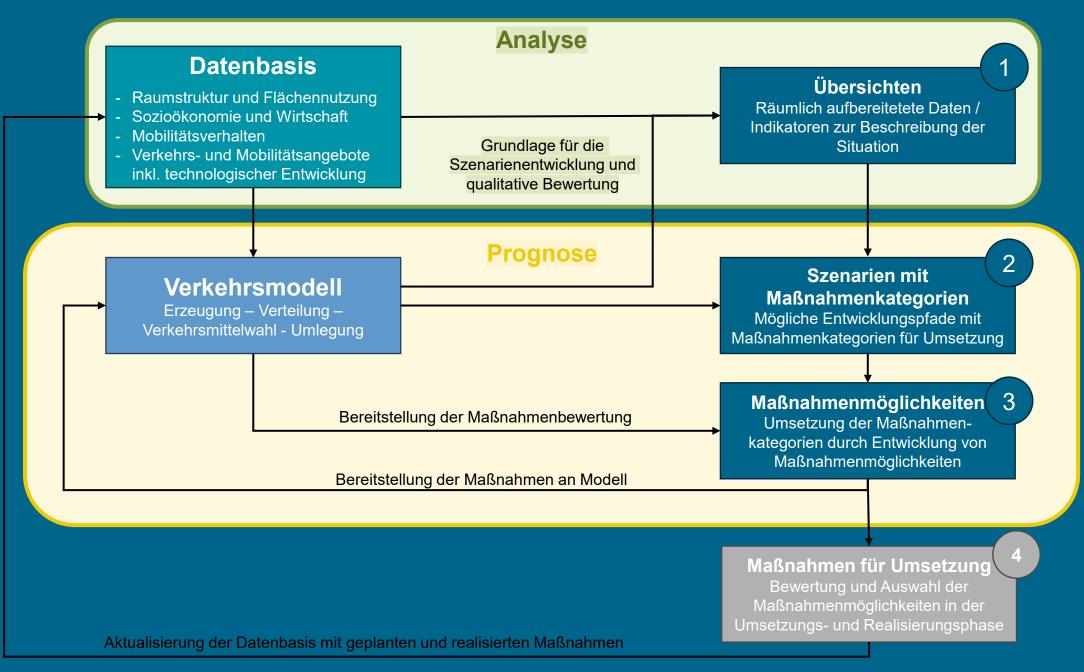
Nina Thomsen

Institut für Verkehrsforschung beim Deutschen Zentrum für Luft- und Raumfahrt (DLR) & atSTAKE

MAKRO, MESO, MIKRO & MORE

Modellmethoden in der Praxis

Makro, Meso, Mikro & More Modellmethoden in der Praxis


In welchen Phasen des SUMP-Prozesses kann ich Verkehrsmodelle sinnvoll einsetzen?

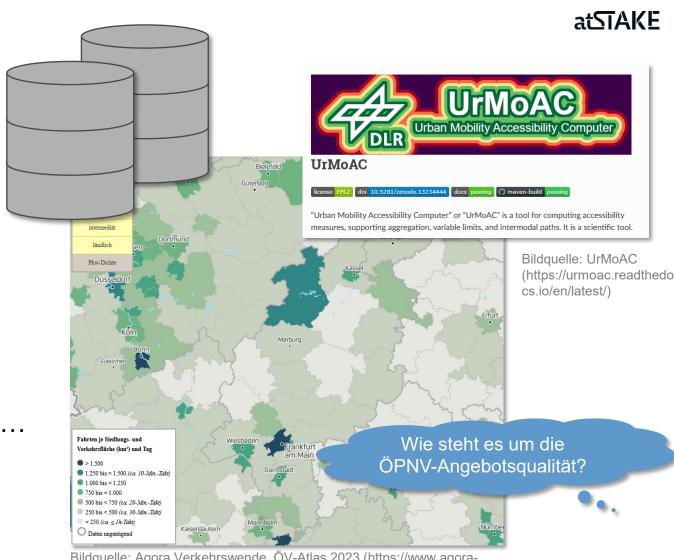
Welches Modell ist für meine Fragestellungen besonders gut geeignet?

Wofür kann mir das Modell außerhalb des SUMP dienen?

atSTAKE

Aussagen zur Mobilitätssituation können durch die Nutzung von **Daten** und **datengetriebene Methoden** getroffen werden.

Aussagen zur Mobilitätssituation können durch die Nutzung von **Daten** und **datengetriebene Methoden** getroffen werden.



Einsatzbereiche

- Analyse der Mobilitätssituation
- Bewertung des Verkehrssystems (Indizes, deskriptive Statistik)
- Datenlücken füllen (z.B. mit KI)
- Grundlage für Verkehrsmodelle

Mögliche Datenquellen

- Offene Daten
- Planwerke, kommunale Statistiken, GIS, ...
- Zählstellen
- Befragungen (eigene, MiD)
- Big Data (Mobilfunkdaten, FCD, ...)

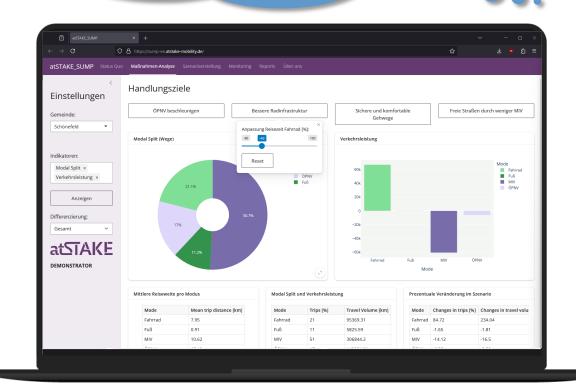
Bildquelle: Agora Verkehrswende, ÖV-Atlas 2023 (https://www.agora-verkehrswende.de/veroeffentlichungen/oev-atlas-2023)

Vereinfachte strategische Modelle können Datenlücken füllen und generelle Prognosen auf systemischer Ebene liefern.

Wie viel Zeitersparnis braucht es mit dem ÖPNV, um deutlich mehr Fahrten zu messen?

Vereinfachte strategische Modelle können Datenlücken füllen und generelle Prognosen auf systemischer Ebene liefern.

atSTAKE


Nachfragereaktionen einordnen

- Datenanalyse gepaart mit vereinfachtem Nachfragemodell
 - Reduktion des Datenbedarfs für die Modellierung, z.B. durch raumlosen Ansatz
- Reaktionen auf Angebotsveränderungen auf systemischer Ebene simulieren

Funktionsweisen

- Kombination aus Verkehrserzeugung und Moduswahl
- Zielwahl vereinfacht als Distanzwahl
- Nutzung von Datenquellen zum Verkehrsverhalten (z.B. MiD, typische Elastizitäten oder Zeitwerte)

Wie viel Zeitersparnis braucht es mit dem ÖPNV, um deutlich mehr Fahrten zu messen?

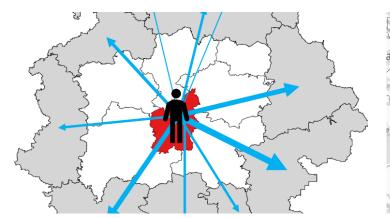
Bildquelle: atSTAKE

Klassische Verkehrsnachfragemodelle bilden das Mobilitätssystem und deren Infrastruktur ab und erlauben detaillierte Analysen.

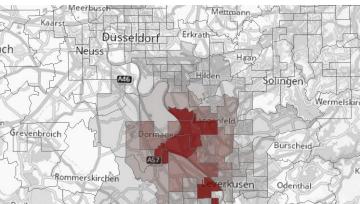
Welche ÖV-Linie sollte eine Takterdichtung bekommen?

Welche Umleitungen können für eine Entlastung der Innenstadt sorgen?

Klassische Verkehrsnachfragemodelle bilden das Mobilitätssystem und deren Infrastruktur ab und erlauben detaillierte Analysen.



Makroskopisches 4-Stufen-Modell


Welche ÖV-Linie sollte eine Takterdichtung bekommen?

Belastung im Netz

Quelle-Ziel-Relationen

Räumliches Verkehrsaufkommen

- Räumliche Aggregierung in Verkehrszellen, zeitliche Aggregierung über definierten Zeitraum
- Höherer Datenbedarf (Netze, Strukturdaten, Sozio-ökonomische Daten, ...)
- Höherer Kalibrierungs- und Validierungsaufwand, da nicht nur Gesamt-System-Indikatoren, sondern auch räumlich spezifische Werte getroffen werden sollten

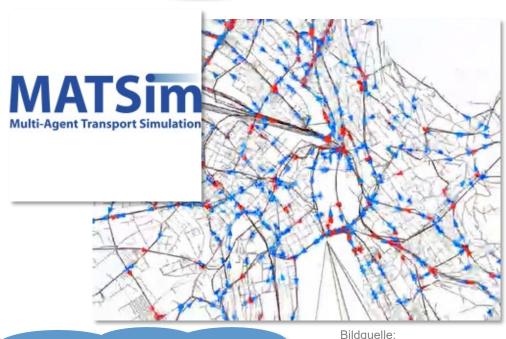
Welche Umleitungen können für eine Entlastung der Innenstadt sorgen?

Noch detailliertere Analysen werden ermöglicht durch agentenbasierte Verkehrsnachfragemodelle.

Können On-Demand-Verkehre den ÖPNV sinnvoll ergänzen?

Zu welcher Tageszeit ist es in welchen Bussen besonders voll?

Noch detailliertere Analysen werden ermöglicht durch agentenbasierte Verkehrsnachfragemodelle.


Was ist der Unterschied zum makroskopischen Modell?

- Simulation von Einzelpersonen und Fahrzeugen (Agenten) statt aggregierten Strömen
- Umsetzung von Tagesplänen der Agenten
- Agenten sind exakte Punkte (zeitlich und räumlich)
- Beispiele für Software: MATSim, mobiTopp, TAPAS

Herausforderungen

- Höherer Rechenaufwand
 - Mehrere Simulationsläufe notwendig
 - Abbildung der gesamten Bevölkerung für größere Räume
- Datenbedarf für die Erstellung
 - Z.B. exakte Zielorte und deren Kapazitäten

Können On-Demand-Verkehre den ÖPNV sinnvoll ergänzen?

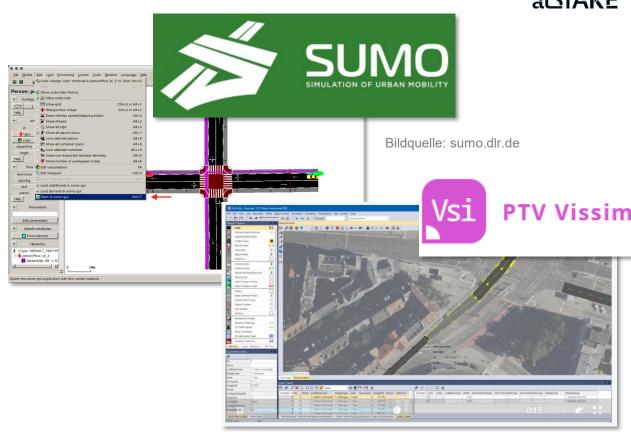
https://www.simunto.com/matsim

Zu welcher Tageszeit ist es in welchen Bussen besonders voll?

Interaktionen der Verkehrsteilnehmenden und der Einfluss der Infrastrukturgestaltung in **Mikroskopische Simulationen**.

Wie optimiere ich die LSA-Schaltung an einem Knotenpunkt?

Was passiert, wenn auf einem Straßenabschnitt eine Busspur eingeführt wird?


Interaktionen der Verkehrsteilnehmenden und der Einfluss der Infrastrukturgestaltung in **Mikroskopische Simulationen**.

Simulation im Straßenraum

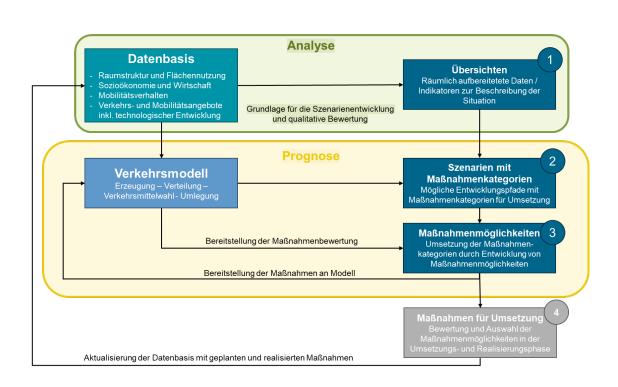
- Simulation des Verhaltens einzelner Verkehrsteilnehmender und deren Interaktionen
 - Anwendung sehr rechenintensiv und dadurch eher kleinräumig (Knotenpunkt oder Straßenzug)
 - Verhalten unmittelbar im Verkehr
- Benötigt Daten zu Verkehrsflüssen und Gestaltung der Infrastruktur

Wie optimiere ich die LSA-Schaltung an einem Knotenpunkt?

Bildquelle: www.ptvgroup.com/de/produkte/ptv-vissim

Was passiert, wenn auf einem Straßenabschnitt eine Busspur eingeführt wird?

Fazit & Zusammenfassung



Einsatz und Wahl der Modellmethode

- Kontinuierliche Arbeit mit und Pflege des Modells
 - Datenbasis und Modell sollten in Besitz der Gemeinde liegen, bzw. für Gemeinde verfügbar sein
- Einsatzgrenzen kennen, Trade-Offs abwägen zwischen Robustheit und Komplexität

Verkehrsmodellierung – Wie starte ich?

- Aufbau von Pipelines über Datenanalyse zu einfachen Prognosetools
- Nutzen der Datenbasis als Modellgrundlage, Entwicklung nach dringenden Fragestellungen priorisieren
- Nutzung des Modells als Datenquelle für Feinplanungen

Verkehrsmodelle im SUMP – wie wird der SUMP gelebt? Wichtige Fragen für Gemeinden

- Wie viel Investition in den Entwicklungsaufwand ist für einen SUMP notwendig? Wie häufig wende ich das Modell an?
- Möchte ich mein Verkehrsmodell in Zukunft für meine Mobilitätsplanung einsetzen, z.B. die Detailplanung von Maßnahmen? Welche weiteren Planungen stehen an, bei denen ein Modell nützlich sein kann?
- > Welche Ressourcen sind für Pflege und Aktualisierung notwendig?
- ➤ Kann das Modell von der Gemeinde **selbst verwendet** werden oder als Tool bei Aufträgen bereit gestellt werden?
- Kann ich Unsicherheiten und Modellschärfe richtig interpretieren und vor allem bei der Kommunikation berücksichtigen?

Impressum

Thema: Makro, Meso, Mikro & more

Modellmethoden in der Praxis

Datum: 2025-11-11

Autor: Nina Thomsen

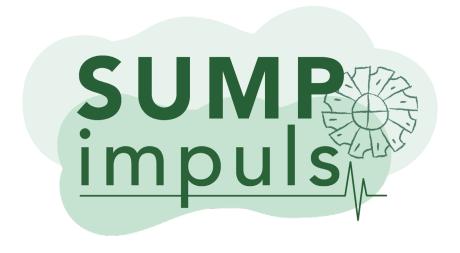
Institut: Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für

Verkehrsforschung; atSTAKE Mobilitätsplanung GmbH

Bildquellen: Alle Bilder "DLR (CC BY-NC-ND 3.0)",

sofern nicht anders angegeben

Jetzt sind Sie dran!


Ihre Fragen und Hinweise im Chat oder direkt.

Vielen Dank für Ihr Interesse! Bitte geben Sie uns Feedback.

Was kommt als nächstes?

5. SUMP-Netzwerktreffen

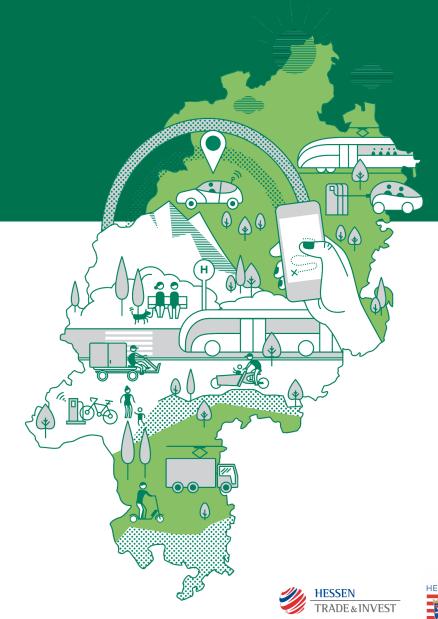
11.02.2026

Stadtschloß Fulda

Melden Sie sich gerne auch für unseren **Newsletter** an:

https://mobilitaetsplanunghessen.de/newsletter/

... und folgen Sie uns auf **LinkedIn**


Fachzentrum Nachhaltige Mobilitätsplanung Hessen

im House of Logistics and Mobility (HOLM)

Bessie-Coleman-Str. 7

D-60549 Frankfurt am Main

